t-distribution Table
The t-distribution table (or Student’s t-table) provides critical values for the t-distribution, primarily used in hypothesis testing and confidence intervals. The critical t-value can be found in the table below for a chosen significance level, typically alpha=0.05. If the calculated t-value is smaller than the critical value, the null hypothesis cannot be rejected.
p-Value
Critical t-Value
Table t-value
Area two tailed | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | 0 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.95 | 0.98 | 0.99 | 0.998 | 0.999 |
1 | 0 | 1 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 318.31 | 636.62 |
2 | 0 | 0.816 | 1.061 | 1.386 | 1.886 | 2.92 | 4.303 | 6.965 | 9.925 | 22.327 | 31.599 |
3 | 0 | 0.765 | 0.978 | 1.25 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.215 | 12.924 |
4 | 0 | 0.741 | 0.941 | 1.19 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 | 8.61 |
5 | 0 | 0.727 | 0.92 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 | 6.869 |
6 | 0 | 0.718 | 0.906 | 1.134 | 1.44 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 | 5.959 |
7 | 0 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 | 5.408 |
8 | 0 | 0.706 | 0.889 | 1.108 | 1.397 | 1.86 | 2.306 | 2.896 | 3.355 | 4.501 | 5.041 |
9 | 0 | 0.703 | 0.883 | 1.1 | 1.383 | 1.833 | 2.262 | 2.821 | 3.25 | 4.297 | 4.781 |
10 | 0 | 0.7 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 | 4.587 |
11 | 0 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 | 4.437 |
12 | 0 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.93 | 4.318 |
13 | 0 | 0.694 | 0.87 | 1.079 | 1.35 | 1.771 | 2.16 | 2.65 | 3.012 | 3.852 | 4.221 |
14 | 0 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 | 4.14 |
15 | 0 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 | 4.073 |
16 | 0 | 0.69 | 0.865 | 1.071 | 1.337 | 1.746 | 2.12 | 2.583 | 2.921 | 3.686 | 4.015 |
17 | 0 | 0.689 | 0.863 | 1.069 | 1.333 | 1.74 | 2.11 | 2.567 | 2.898 | 3.646 | 3.965 |
18 | 0 | 0.688 | 0.862 | 1.067 | 1.33 | 1.734 | 2.101 | 2.552 | 2.878 | 3.61 | 3.922 |
19 | 0 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 | 3.883 |
20 | 0 | 0.687 | 0.86 | 1.064 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 | 3.85 |
21 | 0 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.08 | 2.518 | 2.831 | 3.527 | 3.819 |
22 | 0 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 | 3.792 |
23 | 0 | 0.685 | 0.858 | 1.06 | 1.319 | 1.714 | 2.069 | 2.5 | 2.807 | 3.485 | 3.768 |
24 | 0 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 | 3.745 |
25 | 0 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.06 | 2.485 | 2.787 | 3.45 | 3.725 |
26 | 0 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.435 | 3.707 |
27 | 0 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 | 3.69 |
28 | 0 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 | 3.674 |
29 | 0 | 0.683 | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 | 3.659 |
30 | 0 | 0.683 | 0.854 | 1.055 | 1.31 | 1.697 | 2.042 | 2.457 | 2.75 | 3.385 | 3.646 |
40 | 0 | 0.681 | 0.851 | 1.05 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 | 3.551 |
60 | 0 | 0.679 | 0.848 | 1.045 | 1.296 | 1.671 | 2 | 2.39 | 2.66 | 3.232 | 3.46 |
80 | 0 | 0.678 | 0.846 | 1.043 | 1.292 | 1.664 | 1.99 | 2.374 | 2.639 | 3.195 | 3.416 |
100 | 0 | 0.677 | 0.845 | 1.042 | 1.29 | 1.66 | 1.984 | 2.364 | 2.626 | 3.174 | 3.39 |
1000 | 0 | 0.675 | 0.842 | 1.037 | 1.282 | 1.646 | 1.962 | 2.33 | 2.581 | 3.098 | 3.3 |
How to read the t-table
To read the critical t-value from the t-distribution table, first determine whether you need a one-tailed or two-tailed distribution.
One tail vs two tail
One-Tailed Test: This test is used when you are only interested in deviations in one direction from the mean (e.g., testing if a new medication is more effective than an old one, where only improvements matter). In this case, you’ll only look at the area in one tail of the distribution.
Two-Tailed Test: This test is used when deviations in either direction are important (e.g., testing if a treatment is different from a placebo, whether it’s more effective or less effective). Here, you’re looking at both tails of the distribution, covering both positive and negative extremes.
Determine the Significance Level (𝛼)
The significance level, usually written as 𝛼, is the probability of mistakenly rejecting the null hypothesis when it is actually true. Common significance levels are 0.05 or 0.01.
For example, in a test with 𝛼 = 0.05, the critical t-value will be located in the column corresponding to 1 - 0.05, or 0.95.
Find the Degrees of Freedom (df)
Degrees of freedom (df) are calculated based on your sample size. For a one-sample t-test, the degrees of freedom are n−1, where n is the number of observations in your sample.
The degrees of freedom (df) help you locate the row in the table where your critical t-value is found. For example, if 𝛼 = 0.05 and df = 8, the critical t-value is 2.262.
The number you find here is your critical t-value. This value is the threshold against which you’ll compare your calculated t-statistic.
Once you have your critical t-value, you can use it to evaluate your hypothesis test. If the absolute value of your calculated t-statistic is greater than the critical t-value, you reject the null hypothesis. If you prefer, you can also use our statistics calculator to perform a t-test online.
Calculate t-value
The t-distribution results from a combination of a random variable X with chi-squared distribution and a random variable Y with standard normal distribution to
where Y and X are independent and n is the number of degrees of freedom
Statistics made easy
- many illustrative examples
- ideal for exams and theses
- statistics made easy on 412 pages
- 5rd revised edition (April 2024)
- Only 8.99 €
"Super simple written"
"It could not be simpler"
"So many helpful examples"